How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide.
نویسندگان
چکیده
Mechanisms reported to promote landscape self-organization cannot explain vegetation patterning oriented parallel to flow. Recent catastrophic shifts in Everglades landscape pattern and ecological function highlight the need to understand the feedbacks governing these ecosystems. We modeled feedback between vegetation, hydrology, and sediment transport on the basis of a decade of experimentation. Results from more than 100 simulations showed that flows just sufficient to redistribute sediment from sparsely vegetated sloughs to dense ridges were needed for an equilibrium patterned landscape oriented parallel to flow. Surprisingly, although vegetation heterogeneity typically conveys resilience, in wetlands governed by flow/sediment feedbacks it indicates metastability, whereby the landscape is prone to catastrophic shifts. Substantial increases or decreases in flow relative to the equilibrium condition caused an expansion of emergent vegetation and loss of open-water areas that was unlikely to revert upon restoration of the equilibrium hydrology. Understanding these feedbacks is critical in forecasting wetland responses to changing conditions and designing management strategies that optimize ecosystem services, such as carbon sequestration or habitat provision. Our model and new sensitivity analysis techniques address these issues and make it newly apparent that simply returning flow to predrainage conditions in the Everglades may not be sufficient to restore historic landscape patterns and processes.
منابع مشابه
Vegetation differentiation in the patterned landscape of the central Everglades: importance of local and landscape drivers
Aim We present a model to account for self-assembly of the slough–ridge–tree island patterned landscape of the central Everglades in southern Florida via feedbacks among landforms, hydrology, vegetation and biogeochemistry. We test aspects of this model by analysing vegetation composition in relation to local and landscape-level drivers. Location We quantified vegetation composition and environ...
متن کاملCoastal foredune evolution: the relative influence of vegetation and sand supply in the US Pacific Northwest.
Biophysical feedbacks between vegetation and sediment are important for forming and modifying landscape features and their ecosystem services. These feedbacks are especially important where landscape features differ in their provision of ecosystem services. For example, the shape of coastal foredunes, a product of both physical and biological forces, determines their ability to protect communit...
متن کاملThirteen Most Common Trends Shaping Automobile Dependence Worldwide and the Global Implications of these Trends Kenya
Walking being the oldest form of urban transport, and until the advent of major transformationsin transport technology in the nineteenth century, most cities were structured in ways that supported walkability.Today, there is a change in transportation which emphasizes, the traditional pedestrian paths which are increasinglybecoming non-regulated spaces when compared to the urban spaces for auto...
متن کاملAdvection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades
[1] The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergen...
متن کاملDecadal change in vegetation and soil phosphorus pattern across the Everglades landscape.
Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American naturalist
دوره 176 3 شماره
صفحات -
تاریخ انتشار 2010